Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization

نویسندگان

  • Indranil Pan
  • Saptarshi Das
چکیده

Fractional-order proportional-integral-derivative (FOPID) controllers are designed for load-frequency control (LFC) of two interconnected power systems. Conflicting time-domain design objectives are considered in a multi-objective optimization (MOO)-based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm—the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO, e.g. hypervolume indicator, moment of inertia-based diversity metric, total Pareto spread, spacing metric, are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic-based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time-domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy PID Tuned by a Multi-Objective Algorithm to Solve Load Frequency Control Problem

Abstract In this paper, a fuzzy PID with new structure is proposed to solve the load frequency control in interconnected power systems. in this study, a new structure and effective of the fuzzy PID-type Load frequency control (LFC) is proposed to solve the load frequency control in interconnected power systems. The main objective is to eliminate the deviations in the frequency of different area...

متن کامل

Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control

This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...

متن کامل

A New Class of Decentralized Interaction Estimators for Load Frequency Control in Multi-Area Power Systems

Load Frequency Control (LFC) has received considerable attention during last decades. This paper proposes a new method for designing decentralized interaction estimators for interconnected large-scale systems and utilizes it to multi-area power systems. For each local area, a local estimator is designed to estimate the interactions of this area using only the local output measurements. In fact,...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm

The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2015